IGB383 - Al for Games

Swarm Intelligence and Predator/ Prey
Simulation

Assessment 2 - Written component

Scott Barley
N11558059

Table of Content

Table of Content 2
B) Statement of Completeness 2
Boids Implementation 4
Primary Implementation: 4
Extension Implementation (DissociationCoefficient): 5

C) Bee’s Algorithm Implementation 6
Beehive Simulation Description 6
CRA Requirements: 6
Implementation: 7

D) Predator/Prey simulation: 1"
CRA Requirement 11
Implementation 11
Implementation Stages: 12

E) Conclusion 14
References 15

B) Statement of Completeness

All aspects of the assignment were completed in relation to the assignments CRA requirements and some
additional extra credit extensions were additionally included as outlined below, this includes;
Implementation of
e An implementation of Boids using physics for swarming and behaviours
o Implements Dynamic Dissociation mechanics using a Decay & Top-Up Model
e An implementation of Bee’s Algorithm in which drones are assigned to 3 Primary job (Elite
Forager, Normal Forager & Scout)
o Utilises Utility Functions (Drone Fitness & Asteroid Desirability)
o Utilises Dynamic Asteroid Assignment based on the number of ‘known’ asteroids
o Utilises Neighborhood Shrinking (Refined localised search driven by elite foragers)
e An Implementation of Fight & Flee Mechanic, 4 States (Intercepting, Engaged, Fleeing, & Repair)
o Utilises a Utility Function ‘Risk’; based on current health and number of local allies
o Utilises Dynamic Interception, finding a interception vector the reduces in distance
inversely to drone distance to target
o Utilises Optimal Escape Vector based on Drone & Threat Position and Momentum
Vectors

Figure B.1: Visualisation of Drone Bee’s Algorithm Mechanics in Action

Visual Key
e Blue rings - Local Search Neighborhood
e Green Ring - Mothership, Idle Drone Healing & Refuel Zone

Red lines - Drones Collecting resources
Yellow Lines - Drones Conducting Search
Magenta Lines - Drones moving to resource collection

Boids Implementation

Primary Implementation:

Implementation Location: ‘Drone.cs, Line 405, ‘BoidBehaviour_SinglePass()’
While we were provided with an implementation of voiding in the workshops, the provided implementation

had several issues including not dealing with the local group or cohesion point well, which manifested in
the form of issues such as drift towards the world origin which increased inversely in relation to the
number of boids. As such | decided to implement my own version of boids which worked on the basis of
the local group, to better relate to Reynolds (1987) definition of cohesion as related to the local group.

In relation to Boid 'Alignment’, | opted to leave the provided implementation as although not accurate, it
proved sufficient and was primarily overridden by the MoveTowardsTarget function the majority of the
time, so generally unimportant in terms of accuracy.

Efficiency; although by switching over from the original method which effectively iterated via the Update
loop call to one used implementation that loops through all boids each frame, the efficiency is
substantially decreased, for my use case this had little effect on overall performance so | decided to stick
with it in its current state. If | wanted to make it more efficient | would have likely batched the boids and
used a tick timer system, or used DOTS/ETS system in the future instead of switching back to the Update
function as the iterator.

Figure B.2: Issues with original boiding behaviour

cohesionPos.Set(BF, 8F, 8F):

cohesionPos = cohesionPos + pos ® (1f / (JgameManager. inScensEnemy_array.Length):

Figure B.3: Basic Boiding Behavior

Extension Implementation (DissociationCoefficient):

Implementation Location: ‘Drone.cs, Line 324, BoidDissociationCoefficientAOE_RadialLERP()’

e NOTE: Uses Blumberg’s Decay & Top-Up Model
In addition to the boiding behaviour, | utilised the boid variables to drive dynamic reactions to ‘threat’ when
the boids are attacked, or destroyed by the players. When a drone is attacked or destroyed, the
‘BoidDissociationCoefficientAOE_RadialLERP() function is called in the TakeDamge Override function,
which gets all local boids and increases the dissociation coefficient value, literally in relation to the
distance to the source point. This significantly increases the Separation Distance and reduces the
Coheason force so as to effect the boids spreading out from each other.

Figure B.4: Implementation Calls of Boid Dissociation

Inheritance Owerrides

‘takeDamage(dmg)

BoidDissociationCoefficientADE_Radiall ERP(boidDissociationCoefficient_DistressCallRadius, dmg * boidDissociationCoefficient_DamageToDissocoitionMultiplier);
.takeDamage(dmg) ;

HandleOnDeath()

BoidDissociatienCoefficientADE Radiall ERP(boidDissociationCoefficient DistressCallRadius = 2, 288);

GetComponent<Tra (). enabled =
Hand1eOnDe:

C) Bee’s Algorithm Implementation

Beehive Simulation Description

We were asked to implement Bee’s algorithm which is a nature-inspired optimization algorithm based on
how honey bees optimise nectar gathering in nature. lts part of the family of swarm intelligence
algorithms, along with boids, which utilise decentralised control and decision making to drive emergent
behaviour. Our implementations are set in real-time inside a game engine in the conceptual form of
mining drones harvesting resources from asteroids in space. It consists of agents which conduct global
random searches to locate new asteroids ‘scout drones’, agents which conduct local random searches
‘elite foragers’ and resource collection agents the ‘foragers’. By utilising multiple agents with heuristic
driven allocations the algorithm balances exploration and exploitation, in theory ensuring a global
optimum solution. The heuristics which determine ‘resource desirability’, drone ‘fitness’ are calculated via
utility functions which assign numerical value to the criteria driving the decision making process, by which
allowing a suitable outcome behaviour to be decided on.

While the are a few different version of Bee based algorithms including; Honey bee (Tovey et al. 2004)
BeeAdHoc (Wedde et al. 2005), BeeHive (Wedde et al. 2004), these algorithms are more focused on
graph navigation optimization then our use case, and while interested and providing many additional
ideas, for the sake of the complexity of attempting to utilise the concept in real time 3d space, the
implementation opted for is a relatively simpler interpretation, which still attempts to capture the elements
of both local & global search optimisation for the optimisation of resource collection.

CRA Requirements:

A Beehive simulation: Implement a hive of bee Boids and Bee’s algorithm for harvesting resources. Bees
harvest resource prior to engaging with the Player.

Implementation:

Implementation location: split between: Mothership.CS, Drones.CS, Drones_ FSMBehaviours.CS,
Asteroid.CS & GameManager.CS,

The algorithm is primarily driven within the mothership script where a number of heuristic values are
called and calculated to drive the assignment of drones to locate & gather resources from the surrounding
area. This is achieved in a number of key steps;

Mothership.CS Related Component of the Bees Algorithm Implementation:

e Step 1: Update/Calculate Heuristic values
o PrioritiseDronesByFitness()
m All available idle drones are sorted & ordered by their ‘fitness’; a weighted linear fitness
heuristic that returns a normalised value based on the current health and fuel of each
drone. Located; line 146, Drone.Cs

f_l__Fitness_HEuristic[healthWeightPct = B.6F, fuelWeightPct = 8.4F)

{
currentFitness = healthWeightPct = fn_GetCurrentHealth_Pct() + fuelWeightPct » fn_GetCurrentFuel Pct(]);

return currentFitness;

™ }

o PrioritiseResourcesForCollection_Asteroids()

m All ’known’ asteroids are assessed, sorted and ordered based on their Desirability
‘CalculateAstaroidDesirability()’. This assesses all known asteroids to assign normalised
scores for distance and resource amounts, which are then fed into a weighted linear fithess
heuristic calculation which assigns a value based on a 80% weighting to distance and a
20% weighting to current resource amount Located; line 238, Mothership.Cs

Utility_ResourceDesirability(distance, dis_weighting, TESOUrces, res_weighting)
{
return distance # dis_weighting + resources # res_weighting;

- 1

e Step 2: Assign Drones to Roles
o Assignment of Elite Foragers ‘AssignDronesToBecome_EliteForagers()’,
‘AssignDronesToBecome_NormalForagers()’ & ‘AssignDronesToBecome_Scouts()’

m Using the target number of each of these forage types and the current number of drones
assigned to each associated pool (stored as lists), these pools are topped with the idle
drones based on fitness order, with the fittest going to elites and least fittest becoming
scouts.Located; Mothership.CS

Li = gliteForagers =
1 *> normalForagers =
couts = Lis

ct> idleDrones =

e Step 3: Assignment of Resource Spots

o With the resources prioritisation complete and the drone task assignment complete, the
assignment of resources takes place; ‘AssignElitsTobBestForagingSpots()’ &
‘AssignNormalForagersToForagingSpots()

o These functions work by iterating through the Elite & Normal Forager drones to find drones
that have not yet been assigned a resource(asteroid) to target, then cyclically assigning them
to alternating asteroids, down the priority list. This works in conjunction with a ‘total
assignment number’ stored on each Asteroid.CS to ensure the drones are evenly distributed
between the current priority targets. This stops ‘over assignment’ of drones. For example; Elite
drones the single most desirable asteroid, by limiting the number to half of the total number
that can be assigned to that asteroid, instead ensuring an equal distribution between the 2

most desirable asteroids. The relevant values are calculated dynamically as demonstrated in
the scripts below.

Figure C.1: Dynamic Assignment of drones to resources (asteroids)

bjects[a)
biects[1]

Step 4: Refuel And Repair

(0]

In this step ‘RefuelAndRepairDrones()’; drones are given the conceptual opportunity to ‘rest’
i.e. repair and refuel, at the expense of the collected resources. This results in the drones
cycling through the different jobs as they burn fuel and decrease in fitness and for drones to be
replenished to max fitness in longer periods between job assignments.

e Step 5: Loop End

(¢]

The loop is effectively completed by the drone FSM behaviour ‘HandleReturnToMotherShip()’
(Located in Drone_FSMBehaviours.CS) which is called on their return to the mother ship on
completion of their task. This deassigns the drone from their allocated job, removes them from
the related job pool (Lists) they are in and returns them to the ‘Idle’ Pool, to wait for a fresh
assignment.

The above cycle; allows for an assessment and dynamic response to a continuously changing
environment, so that resources can be located, assessed and assigned to drones for collection to achieve
the optimal outcome. The other half of the Bee’s algorithm is delivered by the Drones and their related
FSM behaviours associated with their assigned jobs/roles.

Drones.CS & Drone_FSMBehaviours.CS; related components of the Bees Algorithm
Implementation:

Job / Behaviour 1: Elite Foraging

GeneralBehaviour_EliteForaging(); found in Drone_FSMBehaviours.CS

This states behaviour function by conducting an ‘elite scout’ behaviour, which was conducted
in relation to neighbourhood variables held by the Asteroid.CS that they had been assigned.
With each time the location around the target asteroid was scouted without the location of a
newly identified resource the ‘neighbourhood scouting radius/area’ is reduced, thereby
increasing the efficiency of future visits while balancing the discovery of new / better
resources.

Figure C.2: Localised Search / Local Neighbourhood Shrinking

Visualisation of Local Neighbourhood Neighbourhood Variables on Asteroid

o Once a scouting attempt had been made; if a new resource had been identified the drone
would return to the mothership to report it, else if not, the drone would forage from its target
asteroid.

e Job/Behaviour 2: Normal Foraging
GeneralBehaviour_Foraging(); found in Drone_FSMBehaviours.CS
The Foraging behaviour, directs the drone towards their assigned asteroid then once in range
they begin to extract resources, up to their carrying capacity prior to returning to the
mothership to deposit them.

Figure C.3: Foraging

Showing the first asteroid located. Yellow Showing the discovery of the new local

lines are scouting lines from the Elites while | resource by the elite drone; green return to
the purple lines are the ‘moving to resource’ | mothership vectors & red resource collection
vectors of the basic forages vectors of the normal forages

e Job /Behaviour 2: Scouting

GeneralBehavior_Scouting(); found in Drone_FSMBehaviours.CS
Scouting is conducted by scouting assigned drones, and is achieved through movement to
randomised position vectors around the mothership, with periodic checks for resources within
the scout detection radius. If a resource is found the scout returns back to the mothership to
‘report’ the discovery.

o Additionally the ‘DetectNewResources()’ function was updated from the originally provided
version to find the best ‘unknown’ asteroid.

Figure C.4: Scouting Visualisations

Yellow Wire Sphere - Scouting Detection range Green Path - Return Vector to Mother Ship once
Yellow Line - Scouting Path a new resource is located

e Supporting Functionality
o The is additional a range of support function for assigning and deassign the drone from
tracking variables as they move through the different states.
o HandleReturnToMotherShip();
m On returning to the mothership deassign drones from role related variables and returns
them to the drone Idle Pool

Finally, to support a prolonged simulation, the asteroids are set to respawn periodically although | couldn't
think of a good reason why this would occur narratively. This is managed in the
AsteroidClusterManager.CS script attached to each asteroid cluster.

D) Predator/Prey simulation:

CRA Requirement

A Predator/Prey simulation: Implement predator/prey behaviour using models for fear, hunger and hunting
as presented in the Lectures. All bee’s should exhibit these behaviours only when they engage with the
Player.

Implementation

The predator/prey behaviours are driven in the Combat Behavior States, called through the FSM
GeneraBehavior_Combat() Function. It works in two primary states; Fighting, or Fleeing, this in turn drives
4 resultant behaviours; Interception, Engagement, Fleeing & RepairAndRegroup. As an aside rather than
referring to it as ‘fear’ I've referred to it as ‘risk’ as it feels more appropriate for robotic drones.

Figure D.1: Primary Functions driving Predator/Prey Behaviours

Update_RunGeneralBehaviour()
(dreneBehaviour)

Dronek ours .EliteFara
GeneralBehav;

urs.Foraging:
-_Foraging();

5. Scouting:
lehavior_Scouting();

ours . Combs
ralBehavior Combat();
oo

ours .ReturnToMotherShip:
_ReturnToMotherShip();

GeneralBehavior_Combat{)

DetermineFightOrFl batBehavior();
RunCombatBehavior();

DetermineFightOrfFleeCombatBehavior()
current_RiskHuristic = RemainingHealt_pct » 8.7F + getNomalisedAlliesThreatRating(minimusNumberO#CloseAlliesToFeelSafe) = 8.3F;
if (current RiskHuristic > 8.5 && droneCombatBehaviour |= DroneCombatBehaviours.RepairAndRegroup)

i#(! (droneCombatBehaviour == urs. Intercepting || droneCombatBehaviour == DroneCombatBehavisurs.Engaged))
droneCombatBehaviour = D ! ours. Intercepting;

if (!(droneCombatBehaviour == DroneCombatBehaviours.Fleeing || droneCombatBehaviour == DroneCombatBehaviours.RepairAndRegroup))

droneCombatBehaviour = D ehavic ing;

RunCombatBehavior()

ironeCombatBehaviour)

aviours. Intercepting:
or_Intercepting();

aviours. Engaged:
Engaged();

aviours. Fleeing:
r_Fleeing();

aviours. RepairAndRegroup:
atBehavior_RepairfndRegroup();

Implementation Stages:

e Stage 1: DetermineFightOrFleeCombatBehavior();
o Located in the Drone.CS Script
o It works by calculating a risk heuristic value by combining different factors like remaining
health and the number of allies.
o The calculated value is then used to determine if it should be in a ‘Fight’ related state, or a
‘Flee’ related state, if this is different to the current state it is in, it is placed into the entry
state of either Fight (Intercept) or Flee (Fleeing).

e Stage 2: Run the Appropriate Combat Behavior
o Called by: ‘RunCombatBehavior()' Located in the Drone.CS Script

e Stage 3: The Combat Behaviours
o CombatBehavior_Intercepting()

m The intercepting behaviour uses a dynamic interception point that decreases in
magnitude the closer the player gets to the interception target, i.e the player ship, thus
resulting in a pretty curved interception which is visually appealing. I've additionally added
a 'Y value offset, so the interception path stays in the players line of sight from their
camera position to support this.

Figure D.2: Visuals of Interception Behaviour

Blue Lines - Interception Vector Visual Effect: the group sawm in and
White Line - Interception Vector (from curve into the path of the player before
player ship) entering their Harassment Mode

o CombatBehavior_Engaged()

m Implementation: Using a calculated vector based on the threat target movement, similar
to the interception vector, but at a fixed distance in front of the PlayerShip so to stay
above the moving player ship, the drones individually and periodically choose random
positions in an area above and around the top of the player ship to swarm between.

m Intended Effect: by choosing positions to move to above the players ship it is intended to
induce the effect the player is being harassed and swarmed.

Figure D.3: Visuals of Engagement / Harassment Behaviour

Purple lines - Harassment Vectors

Visual Outcome:

o CombatBehavior_Fleeing()

m The combat fleeting system is two stages, first an optimal escape vector is calculated
based on the drone and threattarget position and velocity vectors. The Drone then moves
towards this. Once sufficiently far from the player ship the drone is then redirected to the

mothership to heal and regroup.

|

Figure D.4: Visuals of Fleeing Behaviour

Stage 1: Escape Vector Stage 2: Return to Mothership

Light Blue - Escape Vector Light Green - Return To Mothership Vector
]

o CombatBehavior_RepairAndRegroup()

m The repair and regroup behaviour is also two stage, first to move towards a ‘regroup’
position so that all repairing drone are within each others local ally detection range, then

second stage, once a sufficient number of local drones are of sufficient fitness they all
re-engage and change to ‘Intercept’ mode at the same time, creating a new micro swarm.

m IMPORTANT NOTE: for this behaviour to work the mothership must have resources
which are used for repairing and healing the drones.

Figure D.4: Visuals of Repair And Regroup Behavior

Grey Line - Repair and Regroup Position Showing the drones collectively switching back
Vector to Interception mode

E) Conclusion

Overall Summary:

In general I'm pretty happy with what I've had a chance to create in this assignment and unit in general.
Although I've previously experimented with a lot of the elements that went into this assignment, it was a
great learning opportunity to attack it from a slightly different angle in which | discover new challenges and
ways of overcoming them. | mostly enjoy getting to create the cyclical combat experience of shooting the
drones then having them fly away, repair, regroup then come back again, | found it a satisfying and
visually pleasing cycle.

Building On Previous Experience:

Having previously experimented with building the ant colony simulation in Unity DOTS using the
entity-component workflow and creating reactive boids for my IGB100 assignment, where much of the
focus in both projects was on efficiency & ensuring hundreds / thousands of boids behaved smoothly
using batching, grouping, and tick-time solutions. Initially, this current implementation made me
uncomfortable due to its inefficiency, especially since much of the logic ran through the Update loop.
However, in this use case, where scalability wasn't a priority and | found myself focusing less on
optimisation and more on exploring different options and system components. This shift allowed me to
enjoy the process more, as | wasn’t consumed by the need to solve efficiency problems.

New things | learned:
On a similar note the concept of using the Update as an iterator to loop through a group of Units doing

calculations was something I've not encountered previously

Planning, Design & Implementation of FSM:

One of the core challenges and issues | encountered was related to my initial design choices, in particular
implementing an overly simplified Drone FSM system.As | initially designed my implementation around
only delivering the basic requirements of the assessment, | utilised a very basic state switching system
where the switch statements existed in the states themselves. This choice backfired later in the
development process as | opted to create more states, leading to a lot of wasted time reworking and
battling the system to be capable of dealing with each new state | added. My take away learning point
from this experience is that if I'm implementing a FSM system | should design the system with better
extensibility with a more formulated FSM methodology, as previously explored in Assignment 1, from the
outset of the project in future.

References

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. Computer Graphics,
21(4), 25-34. https://doi.org/10.1145/37402.37406

https://cs.stanford.edu/people/eroberts/courses/soco/projects/2008-09/modeling-natural-systems/boids.ht
ml

Tovey CA. (2004). The honey bee algorithm, a biologically inspired approach to internet server
optimization. Engineering Enterprise, Spring, pp.13-15

Wedde HF., Farooq M. and Zhang Y. (2004) BeeHive: An Efficient Fault-Tolerant Routing Algorithm
Inspired by Honey Bee Behavior. ANTS, LNCS 3172, pp.83—-94.

Wedde HF., Farooq M., Pannenbaecker T., Vogel B., Mueller C., Meth J., and Jeruschkat R. (2005).
BeeAdHoc: An Energy Efficient Routing Algorithm for Mobile AdHoc Networks Inspired by Bee Behaviour.
GECCO'05, June 2529, USA.

https://doi.org/10.1145/37402.37406
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2008-09/modeling-natural-systems/boids.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2008-09/modeling-natural-systems/boids.html

	
	
	
	Swarm Intelligence and Predator/ Prey Simulation
	
	Assessment 2 - Written component
	​​
	Table of Content
	
	B) Statement of Completeness
	Boids Implementation
	Primary Implementation:
	Extension Implementation (DissociationCoefficient):

	C) Bee’s Algorithm Implementation
	Beehive Simulation Description
	CRA Requirements:
	
	Implementation:

	
	D) Predator/Prey simulation:
	CRA Requirement
	Implementation
	Implementation Stages:

	E) Conclusion
	References

